Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 128(10): 1817-1824, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38437187

RESUMO

Strong coupling of cavity photons and molecular vibrations creates vibrational polaritons that have been shown to modify chemical reactivity and alter material properties. While ultrafast spectroscopy of vibrational polaritons has been performed intensively in metal complexes, ultrafast dynamics in vibrationally strongly coupled organic molecules remain unexplored. Here, we report ultrafast pump-probe measurement and two-dimensional infrared spectroscopy in diphenylphosphoryl azide under vibrational strong coupling. Early time oscillatory structures indicate coherent energy exchange between the two polariton modes, which decays in ∼2 ps. We observe a large transient absorptive feature around the lower polariton, which can be explained by the overlapped excited-state absorption and derivative-shaped structures around the lower and upper polaritons. The latter feature is explained by the Rabi splitting contraction, which is ascribed to a reduced population in the ground state. These results reassure the previously reported spectroscopic theory to describe nonlinear spectroscopy of vibrational polaritons. We have also noticed the influence of the complicated layer structure of the cavity mirrors. The penetration of the electric field distribution into the layered structure of the dielectric-mirror cavities can significantly affect the Rabi splitting and the decay time constant of polaritonic systems.

2.
J Am Chem Soc ; 145(27): 14922-14931, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37364237

RESUMO

Quantum sensing affords the possibility of using quantum entanglement to probe electromagnetic fields with exquisite sensitivity. In this work, we show that a photogenerated spin-correlated radical ion pair (SCRP) can be used to sense an electric field change created at one radical ion of the pair using molecular recognition. The SCRP is generated within a covalent donor-chromophore-acceptor system PXX-PMI-NDI, 1, where PXX = peri-xanthenoxanthene, PMI = 1,6-bis(p-t-butylphenoxy)perylene-3,4-dicarboximide, and NDI = naphthalene-1,8:4,5-bis(dicarboximide). The electron-rich PXX donor in 1 acts as a guest molecule that can be encapsulated selectively by a tetracationic cyclophane ExBox4+ host to give a supramolecular complex 1 ⊂ ExBox4+. Selective photoexcitation of the PMI chromophore results in ultrafast generation of the PXX•+-PMI-NDI•- SCRP. When PXX is encapsulated by ExBox4+, the cyclophane generates an electric field that repels the positive charge on PXX•+ within PXX•+-PMI-NDI•-, reducing the SCRP distance, i.e., the distance between the centers-of-charge on the donor and acceptor. Pulse-EPR measurements are used to measure the coherent oscillations created primarily by the electron-electron dipolar coupling in the SCRP, which yields the distance between the two charges (spins) of PXX•+-PMI-NDI•-. The experimental results show that the distance between PXX•+ and NDI•- decreases when ExBox4+ encapsulates PXX•+, which demonstrates that the SCRP can function as a quantum sensor to detect electric field changes in the vicinity of the radical ions.

3.
Chem Sci ; 14(15): 4183-4192, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37063797

RESUMO

Herein, we investigate synthetic routes to a close mimic of natural pheomelanin. Three different oxidative polymerization routes were attempted to generate synthetic pheomelanin, each giving rise to structurally dissimilar materials. Among them, the route employing 5-cysteinyl-dihydroxyphenylalanine (5-CD) as a monomer was verified as a close analogue of extracted pheomelanin from humans and birds. The resulting biomimetic and natural pheomelanins were compared via various techniques, including solid-state Nuclear Magnetic Resonance (ssNMR) and Electron Paramagnetic Resonance (EPR). This synthetic pheomelanin closely mimics the structure of natural pheomelanin as determined by parallel characterization of pheomelanin extracted from multiple biological sources. With a good synthetic biomimetic material in hand, we describe cation-π interactions as an important driving force for pheomelanogenesis, further advancing our fundamental understanding of this important biological pigment.

4.
J Am Chem Soc ; 145(11): 6585-6593, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36913602

RESUMO

Sub-nanosecond photodriven electron transfer from a molecular donor to an acceptor can be used to generate a radical pair (RP) having two entangled electron spins in a well-defined pure initial singlet quantum state to serve as a spin-qubit pair (SQP). Achieving good spin-qubit addressability is challenging because many organic radical ions have large hyperfine couplings (HFCs) in addition to significant g-anisotropy, which results in significant spectral overlap. Moreover, using radicals with g-factors that deviate significantly from that of the free electron results in difficulty generating microwave pulses with sufficiently large bandwidths to manipulate the two spins either simultaneously or selectively as is necessary to implement the controlled-NOT (CNOT) quantum gate essential for quantum algorithms. Here, we address these issues by using a covalently linked donor-acceptor(1)-acceptor(2) (D-A1-A2) molecule with significantly reduced HFCs that uses fully deuterated peri-xanthenoxanthene (PXX) as D, naphthalenemonoimide (NMI) as A1, and a C60 derivative as A2. Selective photoexcitation of PXX within PXX-d9-NMI-C60 results in sub-nanosecond, two-step electron transfer to generate the long-lived PXX•+-d9-NMI-C60•- SQP. Alignment of PXX•+-d9-NMI-C60•- in the nematic liquid crystal 4-cyano-4'-(n-pentyl)biphenyl (5CB) at cryogenic temperatures results in well-resolved, narrow resonances for each electron spin. We demonstrate both single-qubit gate and two-qubit CNOT gate operations using both selective and nonselective Gaussian-shaped microwave pulses and broadband spectral detection of the spin states following the gate operations.

5.
J Phys Chem B ; 126(49): 10519-10527, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36459223

RESUMO

The ability to initialize an electron spin qubit into a well-defined state is an important criterion for quantum information applications. To achieve this goal, a chromophore photoexcited to its triplet state is used to strongly spin polarize a nearby stable radical in a series of C60 fullerene derivatives containing a covalently linked α,γ-bisdiphenylene-ß-phenylallyl (BDPA) radical. Selective photoexcitation of C60 results in up to 20-fold enhancement of the BDPA spin polarization observed by pulse electron paramagnetic resonance spectroscopy at room temperature. The sign of the spin polarization depends on the nature of the molecular spacer between C60 and BDPA. In addition, transient absorption spectroscopy and pulse-EPR measurements reveal that the BDPA spin polarization is derived from spin polarization transfer from the C60 triplet state by weak exchange coupling over a 1 nm distance.

6.
J Am Chem Soc ; 144(50): 23168-23178, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36507773

RESUMO

Molecular recognition, based on noncovalent bonding interactions, plays a central role in directing supramolecular phenomena in both chemical and biological environments. The identification and investigation of weakly associated recognition motifs, however, remains a major challenge, especially when the motifs are interlinked with and obscured by other robust binding modes in complicated systems. For example, although the host-guest recognition between the radical cations of both cyclobis(paraquat-p-phenylene) (CBPQT) and 4,4'-bipyridinium (BIPY) salts has been thoroughly investigated, the question of whether other binding modes exist between these two positively charged entities is the subject of some debate because of the complexity and dynamic nature of this supramolecular system. In order to address this conundrum, we have synthesized a [2]catenane─formed by mechanical interlocking between CBPQT and another BIPY-containing ring─which enhances the weak interactions between components and reduces significantly the complexity of the system for easier characterization. By employing this [2]catenane as a model compound, we have performed a full-spectrum investigation of radical interactions and revealed unambiguously a total of three possible binding modes between CBPQT and BIPY─to be specific, a bisradical tetracationic, a trisradical tricationic, and a bisradical dicationic association─as demonstrated by various methods of characterization including UV/vis/NIR, EPR, and NMR spectroscopies, electrochemical measurements and X-ray crystallography. The two newly discovered bisradical binding modes have potential applications in the construction of self-assembled materials and in mediating supramolecular catalysis. The mechanical bond-assisted approach used in this research is broadly applicable to investigating noncovalent bonding interactions.


Assuntos
Espectroscopia de Ressonância Magnética , Cátions/química , Cristalografia por Raios X
7.
J Am Chem Soc ; 144(27): 12192-12201, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35786901

RESUMO

The world is currently suffering socially, economically, and politically from the recent pandemic outbreak due to the coronavirus disease 2019 (COVID-19), and those in hospitals, schools, and elderly nursing homes face enhanced threats. Healthcare textiles, such as masks and medical staff gowns, are susceptible to contamination of various pathogenic microorganisms, including bacteria and viruses. Metal-organic frameworks (MOFs) can potentially address these challenges due to their tunable reactivity and ability to be incorporated as porous coatings on textile materials. Here, we report how incorporating titanium into the zirconium-pyrene-based MOF NU-1000, denoted as NU-1012, generates a highly reactive biocidal photocatalyst. This MOF features a rare ligand migration phenomenon, and both the Ti/Zr center and the pyrene linker act synergistically as dual active centers and widen the absorption band for this material, which results in enhanced reactive oxygen species generation upon visible light irradiation. Additionally, we found that the ligand migration process is generally applicable to other csq topology Zr-MOFs. Importantly, NU-1012 can be easily incorporated onto cotton textile cloths as a coating, and the resulting composite material demonstrates fast and potent biocidal activity against Gram-negative bacteria (Escherichia coli), Gram-positive bacteria (Staphylococcus epidermidis), and T7 bacteriophage virus with up to a 7-log(99.99999%) reduction within 1 h under simulated daylight.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Estruturas Metalorgânicas , Idoso , COVID-19/prevenção & controle , Escherichia coli , Humanos , Ligantes , Estruturas Metalorgânicas/farmacologia , Pirenos , Titânio/farmacologia
8.
Nature ; 603(7900): 265-270, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35264758

RESUMO

Molecular recognition1-4 and supramolecular assembly5-8 cover a broad spectrum9-11 of non-covalently orchestrated phenomena between molecules. Catalysis12 of such processes, however, unlike that for the formation of covalent bonds, is limited to approaches13-16 that rely on sophisticated catalyst design. Here we establish a simple and versatile strategy to facilitate molecular recognition by extending electron catalysis17, which is widely applied18-21 in synthetic covalent chemistry, into the realm of supramolecular non-covalent chemistry. As a proof of principle, we show that the formation of a trisradical complex22 between a macrocyclic host and a dumbbell-shaped guest-a molecular recognition process that is kinetically forbidden under ambient conditions-can be accelerated substantially on the addition of catalytic amounts of a chemical electron source. It is, therefore, electrochemically possible to control23 the molecular recognition temporally and produce a nearly arbitrary molar ratio between the substrates and complexes ranging between zero and the equilibrium value. Such kinetically stable supramolecular systems24 are difficult to obtain precisely by other means. The use of the electron as a catalyst in molecular recognition will inspire chemists and biologists to explore strategies that can be used to fine-tune non-covalent events, control assembly at different length scales25-27 and ultimately create new forms of complex matter28-30.

9.
Angew Chem Int Ed Engl ; 60(48): 25454-25462, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34342116

RESUMO

Complexation between a viologen radical cation (V.+ ) and cyclobis(paraquat-p-phenylene) diradical dication (CBPQT2(.+) ) has been investigated and utilized extensively in the construction of mechanically interlocked molecules (MIMs) and artificial molecular machines (AMMs). The selective recognition of a pair of V.+ using radical-pairing interactions, however, remains a formidable challenge. Herein, we report the efficient encapsulation of two methyl viologen radical cations (MV.+ ) in a size-matched bisradical dicationic host - namely, cyclobis(paraquat-2,6-naphthalene)2(.+) , i.e., CBPQN2(.+) . Central to this dual recognition process was the choice of 2,6-bismethylenenaphthalene linkers for incorporation into the bisradical dicationic host. They provide the space between the two bipyridinium radical cations in CBPQN2(.+) suitable for binding two MV.+ with relatively short (3.05-3.25 Å) radical-pairing distances. The size-matched bisradical dicationic host was found to exhibit highly selective and cooperative association with the two MV.+ in MeCN at room temperature. The formation of the tetrakisradical tetracationic inclusion complex - namely, [(MV)2 ⊂CBPQN]4(.+) - in MeCN was confirmed by VT 1 H NMR, as well as by EPR spectroscopy. The solid-state superstructure of [(MV)2 ⊂CBPQN]4(.+) reveals an uneven distribution of the binding distances (3.05, 3.24, 3.05 Å) between the three different V.+ , suggesting that localization of the radical-pairing interactions has a strong influence on the packing of the two MV.+ inside the bisradical dicationic host. Our findings constitute a rare example of binding two radical guests with high affinity and cooperativity using host-guest radical-pairing interactions. Moreover, they open up possibilities of harnessing the tetrakisradical tetracationic inclusion complex as a new, orthogonal and redox-switchable recognition motif for the construction of MIMs and AMMs.

10.
J Am Chem Soc ; 143(21): 8000-8010, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34028258

RESUMO

Colored charge-transfer complexes can be formed by the association between electron-rich donor and electron-deficient acceptor molecules, bringing about the narrowing of HOMO-LUMO energy gaps so that they become capable of harnessing visible light. In an effort to facilitate the use of these widespread, but nonetheless weak, interactions for visible light photocatalysis, it is important to render the interactions strong and robust. Herein, we employ a well-known donor-acceptor [2]catenane-formed by the mechanical interlocking of cyclobis(paraquat-p-phenylene) and 1,5-dinaphtho[38]crown-10-in which the charge-transfer interactions between two 4,4'-bipyridinium and two 1,5-dioxynaphthalene units are enhanced by mechanical bonding, leading to increased absorption of visible light, even at low concentrations in solution. As a result, since this [2]catenane can generate persistent bipyridinium radical cations under continuous visible-light irradiation without the need for additional photosensitizers, it can display good catalytic activity in both photo-reductions and -oxidations, as demonstrated by hydrogen production-in the presence of platinum nanoparticles-and aerobic oxidation of organic sulfides, such as l-methionine, respectively. This research, which highlights the usefulness of nanoconfinement present in mechanically interlocked molecules for the reinforcement of weak interactions, can not only expand the potential of charge-transfer interactions in solar energy conversion and synthetic photocatalysis but also open up new possibilities for the development of active artificial molecular shuttles, switches, and machines.

11.
J Phys Chem Lett ; 12(9): 2213-2218, 2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33630591

RESUMO

Photogenerated entangled electron spin pairs provide a versatile source of molecular qubits. Here, we examine the spin-dependent dynamics of a covalent donor-acceptor-radical molecule, D-A-R•, where the donor chromophore (D) is peri-xanthenoxanthene (PXX), the acceptor (A) is pyromellitimide (PI), and the radical (R•) is α,γ-bisdiphenylene-ß-phenylallyl (BDPA). Selective photoexcitation of D within D-A-R• in butyronitrile/propionitrile at 140 K and butyronitrile at 105 K results in the spin-selective reactions D-A-R• → D•+-1(A•--R•) and D•+-3(A•--R•). Subsequently, at 140 K, D•+-1(A•--R•) → D•+-A-R-, whereas D•+-3(A•--R•) → D-A-R•. In contrast, at 105 K, D•+-3(A•--R•) → 3*D-A-R• and D-A-R•. Time-resolved EPR spectroscopy shows that 3*D-A-R• is highly spin-polarized, where the ms = ±1/2 spin sublevels of the doublet-quartet manifolds are selectively populated. These results demonstrate dielectric environment control over different spin states in the same molecule.

12.
J Am Chem Soc ; 142(29): 12802-12810, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32638590

RESUMO

Melanins are a family of heterogeneous biopolymers found ubiquitously across plant, animal, bacterial, and fungal kingdoms where they act variously as pigments and as radiation protection agents. There exist five multifunctional yet structurally and biosynthetically incompletely understood varieties of melanin: eumelanin, neuromelanin, pyomelanin, allomelanin, and pheomelanin. Although eumelanin and allomelanin have been the focus of most radiation protection studies to date, some research suggests that pheomelanin has a better absorption coefficient for X-rays than eumelanin. We reasoned that if a selenium enriched melanin existed, it would be a better X-ray protector than the sulfur-containing pheomelanin because the X-ray absorption coefficient is proportional to the fourth power of the atomic number (Z). Notably, selenium is an essential micronutrient, with the amino acid selenocysteine being genetically encoded in 25 natural human proteins. Therefore, we hypothesize that selenomelanin exists in nature, where it provides superior ionizing radiation protection to organisms compared to known melanins. Here we introduce this novel selenium analogue of pheomelanin through chemical and biosynthetic routes using selenocystine as a feedstock. The resulting selenomelanin is a structural mimic of pheomelanin. We found selenomelanin effectively prevented neonatal human epidermal keratinocytes (NHEK) from G2/M phase arrest under high-dose X-ray irradiation. Provocatively, this beneficial role of selenomelanin points to it as a sixth variety of yet to be discovered natural melanin.


Assuntos
Melaninas/química , Compostos Organosselênicos/química , Selênio/química , Humanos , Queratinócitos/efeitos dos fármacos , Melaninas/farmacologia , Estrutura Molecular , Compostos Organosselênicos/síntese química , Compostos Organosselênicos/farmacologia , Tamanho da Partícula , Selênio/farmacologia , Propriedades de Superfície , Raios X
13.
J Phys Chem A ; 124(30): 6168-6176, 2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32551620

RESUMO

Switchable coupling between two qubits is important for quantum information science (QIS). As a proof of concept, a series of mesosubstituted porphyrins have been synthesized with a (2,2,6,6-tetramethylpiperidin-1-yl)oxyl stable free radical (SFR) appended and metalated with Cu(II), Ni(II), and Zn(II) in order to explore the interaction between the SFR doublet state and metalloporphyrin. The spin state of the porphyrin varies upon metal insertion, where Zn(II) is a diamagnetic metal, Cu(II) is paramagnetic, and Ni(II) can be switched from a diamagnetic square-planar structure to a paramagnetic octahedral state by complexation with a solvent (i.e., pyridine or tetrahydrofuran). Time-resolved electron paramagnetic resonance (EPR) measurements reveal that upon photoexcitation, the Zn(II) and free-base porphyrin species demonstrate different magnetic exchange regimes between the porphyrin triplet excited states and the SFR doublet state, with the Zn derivative populating a quartet state (i.e., moderate magnetic exchange), whereas the free-base derivative remains a triplet (i.e., weak magnetic exchange). Transient absorption measurements corroborate the TREPR results, demonstrating a 66% increase in the singlet excited-state decay rate due to enhanced intersystem crossing for the Zn(II) derivative in comparison to a modest 14% enhancement for the free-base porphyrin. These results enable the realization of a switchable qubit coupler, depending upon Zn metal insertion to the free-base porphyrin, which has potential QIS applications.

14.
J Am Chem Soc ; 142(15): 7190-7197, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32223154

RESUMO

Two new highly charged [2]catenanes-namely, mHe[2]C·6PF6 and mHo[2]C·6PF6-were synthesized by exploiting radical host-guest templation between derivatives containing BIPY•+ radical cations and the meta analogue of cyclobis(paraquat-p-phenylene). In contrast to related [2]catenanes that have been isolated as air-stable monoradicals, both mHe[2]C·6PF6 and mHo[2]C·6PF6 exist as air-stable singlet bisradicals, as evidenced by both X-ray crystallography in the solid state and EPR spectroscopy in solution. Electrochemical studies indicate that the first two reduction peaks of these two [2]catenanes are shifted significantly to more positive potentials, a feature which is responsible for their extraordinary stability in air. The mixed-valence nature of the mono- and bisradical states endows them with unique NIR absorption properties, e.g., NIR absorption bands for the mono- and bisradical states observed at ∼1800 and ∼1450 nm, respectively. These [2]catenanes are potentially useful in applications that include NIR photothermal conversion, UV-vis-NIR multiple-state electrochromic materials, and multiple-state memory devices. Our findings highlight the principle of "mechanical-bond-induced stabilization" as an efficient strategy for designing persistent organic radicals.

15.
J Am Chem Soc ; 142(11): 5419-5428, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32083871

RESUMO

Synthetic macrocycles capable of undergoing allosteric regulation by responding to versatile external stimuli are the subject of increasing attention in supramolecular science. Herein, we report a structurally transformative tetracationic cyclophane containing two 3,6-bis(4-pyridyl)-l,2,4,5-tetrazine (4-bptz) units, which are linked together by two p-xylylene bridges. The cyclophane, which possesses modular redox states and structural post-modifications, can undergo two reversibly consecutive two-electron reductions, affording first its bisradical dicationic counterpart, and then subsequently the fully reduced species. Furthermore, one single-parent cyclophane can afford effectively three other new analogs through box-to-box cascade transformations, taking advantage of either reductions or an inverse electron-demand Diels-Alder (IEDDA) reaction. While all four new tetracationic cyclophanes adopt rigid and symmetric box-like conformations, their geometries in relation to size, shape, electronic properties, and binding affinities toward polycyclic aromatic hydrocarbons can be readily regulated. This structurally transformative tetracationic cyclophane performs a variety of new tasks as a result of structural post-modifications, thus serving as a toolbox for probing the radical properties and generating rapidly a range of structurally diverse cyclophanes by efficient divergent syntheses. This research lays a solid foundation for the introduction of the structurally transformative tetracationic cyclophane into the realm of mechanically interlocked molecules and will provide a toolbox to construct and operate intelligent molecular machines.

16.
Chemistry ; 23(28): 6930-6936, 2017 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-28342198

RESUMO

Two new diboranes, 2,6-bis(BMes2 )mesitylene (1) and 3,3'-bis(BMes2 )bimesitylene (3), were synthesized. Two-electron reduction of 1 with elemental potassium afforded the C-H activation product [(18-c-6)K(THF)2 ]2+ ⋅22- bearing a BC3 four-membered ring as colorless crystals, whereas the reduction of 3 with potassium led to the isolation of [(18-c-6)K(THF)2 ]2+ ⋅32-.. as dark blue crystals. Both reduction products were characterized by structural and spectroscopic methods. Electron paramagnetic resonance (EPR) spectroscopy and theoretical calculations revealed that the electron spin density of 32-.. mainly resides on the two boron nuclei and features a triplet ground state, which was confirmed by superconducting quantum interference device (SQUID) measurements as well as theoretical calculations. 32-.. represents the first structurally characterized boron-centered diradical with a triplet ground state. In addition, the reactivity of [(18-c-6)K(THF)2 ]2+ ⋅32-.. toward PhSeSePh and nBu3 SnH was investigated, which is consistent with its radical character.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...